RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. SECOND SEMESTER EXAMINATION, MAY 2016

FIRST YEAR [BATCH 2015-18] **COMPUTER SCIENCE (Honours)**

Date : 18/05/2016 Time : 11 am – 3 pm

Paper : II

Full Marks: 75

[1×5]

[3×10]

7

6

5

[Use a separate Answer Book for each group]

Group – A

Answer any one question from the followings :

- Given a upper triangular matrix A of size $n \ge n$. We want to store the elements of A into a one 1. dimensional array B in chronological order. Let L be the index for array B. The elements of A are accessed by $A_{J,K}$. Establish an address calculation formula for L in terms of J, K & n.
- Each element of an array arr[20][50] requires 4 bytes of storage. Base address of arr is 2000. What 2. would be the address/location of arr[10][10] when the array is stored as column-major and rowmajor order. $2^{1/2}x^{2}$

Answer any three questions from question no. 3 to 7:

- 3. a) Given a liner sequential storage of size n. Design an algorithm to maintain a queue & a stack on that storage space at the same time. Illustrate the algorithm with suitable example.
 - b) Draw the call stack for the following function calls: main()

```
{
        a = 10;
        c = f(a);
        b = a + g(c);
 }
f(a)
 {
        d = 20:
        return d+h(d);
 }
g(c)
 {
        return c * c;
 }
h(d)
 ł
        return d * 2;
```

		}	3
4.	a)	Explain merge sort algorithm. Show how the merge sort algorithm will sort the following array in increasing order: 100, 90, 80, 60, 20, 30, 50, 40	3+2+2
	b)	Analyze the time complexity of the merge sort algorithm. What do you mean by ADT? What is dynamic data structure?	1½x2
5.	a)	Suppose you are given with two linked list $L \& P$. All the elements of $L \& P$ are sorted. Now design an algorithm to find the common elements between these two lists. Analyze its time	

complexity. Write the algorithm of interpolation search. What is the time complexity of interpolation b) search? 3 + 1

- Explain how insertion and deletion operations can be performed in O(1) time on circular 6. a) linked list. Illustrate with an example.
 - Convert the following infix expression to its equivalent postfix notation by showing the b) operator stack and output string after reading each input token:

$$A * B + C * (D - E) - F * G$$
 4

6

5

3

2

[4×10]

Prove that the worst case time complexity of quick sort is $O(n^2)$. 7. a)

Answer any four questions from question no. 8 to 13 :

- Let $S_1 \& S_2$ be two algorithms to solve a particular problem X. If the time complexity of these b) two algorithms are in same asymptotic order then how would you judge which algorithm is better?
- How does tail recursion differ from normal recursive operations? Illustrate with an example. c)

Reduce the following problem to standard maximization form. 12. a)

Maximize $z = 3x_1 + 2x_2 + 5x_3$

Subject to:

$$2x_1 - 3x_2 \le 3, 4x_1 + 2x_2 - 4x_3 \ge 5, |2x_1 + 3x_3| \le 2,$$

Where $x_1, x_2 \ge 0$ and x_3 is unrestricted in sign.

b) Given the following matrix of the set up costs of the machine when there is a change of item for processing on the machine. Show how to sequence production of five items so as to minimize set up cost per cycle.

	Α	В	С	D	E
А	∞	2	5	7	1
В	6	∞	3	8	2
С	8	7	∞	4	7
D	12	4	6	∞	5
Е	1	3	2	8	∞

_____× __

13. a) Solve the following Linear Programming Problem by penalty method.
Maximize
$$z = -2x_1+x_2+3x_3$$

Subject to:

 $x_1 - 2x_2 + 3x_3 = 2,$ $3x_1 + 2x_2 + 4x_3 = 1,$ Where $x_1, x_2, x_3 \ge 0$ Find the dual problem of the following L.P.P. Maximize $z = x_1 + 4x_2 + 3x_3$ Subject to: $2x_1 + 3x_2 - 5x_3 \le 2,$ $3x_1 - x_2 + 6x_3 \ge 1,$ $x_1 + x_2 + x_3 = 4,$ Where $x_1, x_2, x_3 \ge 0$

b)

4

6

5